Indian Statistical Institute, Bangalore Centre

B.Math (Hons.) II Year, Second Semester Mid-Sem Examination Algebra IV .00PM March 04, 2013 Instructor: Bhaskar Bagchi

Time: 9.00AM-1.00PM

Maximum Marks : 100.

1. In each of the following cases, find the minimal polynomial $f \in Q[X]$ of α , the splitting field E of f, and the Galois group of E over Q.

(a)
$$\alpha = 1 + \sqrt{2}$$
 (b) $\alpha = \sqrt{2} + \sqrt{3}$, (c) $\alpha = \sqrt{3 - 2\sqrt{2}}$,
(d) $\alpha = (1 + \sqrt{-3})^{1/3}$ [20]

- 2. Let $E \supseteq F$ be finite fields. Then compute the Galois group Gal(E, F) in terms of the orders of E and F. Hence, show that this is a Galois extension. [20]
- 3. Let $E \supseteq B \supseteq F$ be finite extensions of fields. (a) If $E \supseteq F$ is Galois then show that $E \supseteq B$ is Galois. (b) If $E \supseteq B$ and $B \supseteq F$ are both Galois then show that $E \supseteq F$ is Galois. [20]

(Hint : May use any of the criteria proved in class for an extension to be Galois).

- 4. Let f be an irreducible polynomial over a field F. If char(F) = 0 then show that f is separable. Given an example, with char(F) = 2, where f is not separable. [20]
- 5. Show that, for any field K, Aut(K) is a linearly independent subset of the K- vector space K^K . [20]